Meta menu:

From here, you can access the Emergencies page, Contact Us page, Accessibility Settings, Language Selection, and Search page.

  • Go to Emergencies.
  • Current language selection: EN

    Change language selection to:

  • Contact us:

    Campus Charité MitteCharitéplatz 1 (local address: Luisenstraße 13)
    10117 Berlin

    Campus Virchow-KlinikumAugustenburger Platz 1 (local address: Südring 4)
    13353 Berlin

    Campus Benjamin FranklinHindenburgdamm 30 (local address: Haus V, Eingang West)
    12203 Berlin

  • Accessibility:
    Contrast Settings Change contrast
    Font size
    Font size bigger: STRG+ Font size smaller: STRG-

    You can enlarge or reduce the browser window. Please use CTRL and + to zoom in or CTRL and - to zoom out. Press CTRL and 0 to reset your browser window to normal size.

Open Menu
© Charité | Wiebke Peitz

Press release

12.03.2012

Understanding Cellular Signal Processing

Back to Overview

You are here:

Charité Scientists Develop Novel Method

Eine simulierte Zelle baut einen Kontakt mit einer benachbarten Zelle auf.
Eine simulierte Zelle baut einen Kontakt mit einer benachbarten Zelle (nicht im Bild) auf. Die Simulation zeigt die dynamische Verteilung des den Zellkontakt vermittelnden Proteins E-cadherin auf der Zellmembran über 1h (blau: niedrige, rot: hohe Konzentration).

Scientists at the Charité – Universitätsmedizin Berlin and the US National Institutes of Health (NIH) have developed a realistic model for explaining cellular signal processing. This new method will be applied to the systems biological analysis of how heart muscle cells function and to model particular data from tumor tissue from lung cancer patients. The results of the work are published in the current issue of the journal Nature Methods*.

Metabolic and regulatory cell paths are characterized by a large number of interacting components. The formulation and use of detailed mathematical descriptions of cellular processes may help understand these complex systems better and allow for predications about the complex behavior of biological systems. In their work, the scientists introduce a new type of method to model and simulate cellular signal processing. With the method described, it is possible for the first time to realistically connect dynamic biochemical and morphological changes to each other. This allows knowledge about biology derived from experiments, for example the interplay between individual molecules, to be realistically translated into computer models. “An additional advantage of our method is the user-friendliness of the software. It allows physicians and biologists with no knowledge of mathematical physics to develop or modify complex biological models,” explains Dr. Frederick Klauschen from the Charité Institute of Pathology.

With these models, experiments can be conducted on the computer enabling scientists to test conceptual models and hypotheses about the function of physiological and pathological processes. For example, one can simulate what happens to a cell’s modeled signal network when one changes (or mutates) a particular molecule.

Thus, the method can make a valuable contribution in the future to “personalized medicine” by integrating the results of molecular-pathological diagnostics into a systems biology approach enabling a better understanding of pathological changes.

*Angermann BR, Klauschen F, Garcia AD, Prustel T, Zhang F, Germain RN, Meier-Schellersheim M. Computational modeling of cellular signaling processes embedded into dynamic spatial contexts.
Nat Methods. 2012 Jan 29;9(3):283-9. doi:10.1038/nmeth.1861. PubMed PMID: 22286385.

Links

Link to the article:
http://www.nature.com/nmeth/journal/v9/n3/full/nmeth.1861.html

The article is featured on the Nature Methods cover page: http://www.nature.com/nmeth/journal/v9/n3/covers/index.html

Contact

Dr. Frederick Klauschen
Institut für Pathologie
Campus Charité Mitte
Charité – Universitätsmedizin Berlin   
t: +49 30 450 536 053



Back to Overview