Meta menu:

From here, you can access the Emergencies page, Contact Us page, Accessibility Settings, Language Selection, and Search page.

  • Go to Emergencies.
  • Current language selection: EN

    Change language selection to:

  • Contact us:

    Campus Charité MitteCharitéplatz 1 (local address: Luisenstraße 13)
    10117 Berlin

    Campus Virchow-KlinikumAugustenburger Platz 1 (local address: Südring 4)
    13353 Berlin

    Campus Benjamin FranklinHindenburgdamm 30 (local address: Haus V, Eingang West)
    12203 Berlin

  • Accessibility:
    Contrast Settings Change contrast
    Font size
    Font size bigger: STRG+ Font size smaller: STRG-

    You can enlarge or reduce the browser window. Please use CTRL and + to zoom in or CTRL and - to zoom out. Press CTRL and 0 to reset your browser window to normal size.

Open Menu
© Charité | Wiebke Peitz

Press release

05.01.2017

Opioids produce analgesia via immune cells

Back to Overview

You are here:

Researchers from the Charité find new signaling pathway

Opioids are the most powerful painkillers. Researchers at the Charité – Universitätsmedizin Berlin have now found that the analgesic effects of opioids are not exclusively mediated by opioid receptors in the brain, but can also be mediated via the activation of receptors in immune cells. These findings represent a novel concept in our understanding of the mechanisms of opioid analgesia. Results from this research, published in the journal Brain, Behavior, and Immunity*, show that pain reduction in mice was mediated by the activation of opioid receptors in immune cells.

Opioids such as morphine are the gold standard for the treatment of severe pain. Until now, opioids were considered to reduce pain by inhibiting the activity of sensory neurons in the brain. However, most pain conditions are associated with damage to peripheral tissue (skin, joints, viscera), which is infiltrated by immune cells. “This prompted us to ask whether opioids could also inhibit pain by acting on immune cells,” explains Prof. Dr. Halina Machelska, a researcher at the Department of Anesthesiology and Critical Care Medicine at the Charité – Campus Benjamin Franklin. “We hypothesized that opioids act at opioid receptors on immune cells and release endogenous opioid peptides such as endorphins, enkepahlins and dynorphins. The secreted opioid peptides would then activate neuronal opioid receptors and reduce pain.”

Using an animal model of neuropathic pain and three different exogenous opioids (opioid receptor agonists), the researchers led by Prof. Machelska demonstrated that all three agonists alleviated pain. However, animals with reduced numbers of immune cells experienced much weaker analgesia. Interestingly, this analgesia was fully restored when the numbers of immune cells were again increased. This effect was only mediated by immune cells containing opioid receptors. “We were able to show that opioid agonists activate opioid receptors on immune cells, which triggered the release of endogenous painkillers (opioid peptides) and produced analgesia in a mouse model of neuropathic pain,” explains Prof. Machelska. She adds, “This led us to conclude that opioids can exert enhanced analgesia when they act directly in painful tissue – providing that this tissue is inflamed and contain immune cells.” These findings are relevant for many pain conditions, including arthritis, nerve damage, post-surgical and cancer pain, since all of them are associated with an immune response. Furthermore, opioids acting directly within peripheral inflamed tissue, outside of the brain, will not produce undesirable effects such as nausea, breathing difficulties, and addiction. These findings provide incentives for the development of new opioids exerting analgesia selectively in peripheral damaged tissue infiltrated by immune cells expressing opioid receptors.

*Melih Ö. Celik, Dominika Labuz, Karen Henning, Melanie Busch-Dienstfertig, Claire Gaveriaux-Ruff, Brigitte L. Kieffer, Andreas Zimmer, Halina Machelska. Leukocyte opioid receptors mediate analgesia via Ca2+-regulated release of opioid peptides. Brain Behav Immun. 2016 Oct. doi: 10.1016/j.bbi.2016.04.018. Epub 2016 Apr 30.
http://dx.doi.org/10.1016/j.bbi.2016.04.018

Links

Department of Anesthesiology and Critical Care Medicine

Contact

Prof. Dr. Halina Machelska
Department of Anesthesiology and Critical Care Medicine
Charité-Universitätsmedizin Berlin
Campus Benjamin Franklin
Tel: +49 30 8445 3851



Back to Overview