Meta menu:

From here, you can access the Emergencies page, Contact Us page, Accessibility Settings, Language Selection, and Search page.

  • Go to Emergencies.
  • Current language selection: EN

    Change language selection to:

  • Contact us:

    Campus Charité MitteCharitéplatz 1 (local address: Luisenstraße 13)
    10117 Berlin

    Campus Virchow-KlinikumAugustenburger Platz 1 (local address: Südring 4)
    13353 Berlin

    Campus Benjamin FranklinHindenburgdamm 30 (local address: Haus V, Eingang West)
    12203 Berlin

  • Accessibility:
    Contrast Settings Change contrast
    Font size
    Font size bigger: STRG+ Font size smaller: STRG-

    You can enlarge or reduce the browser window. Please use CTRL and + to zoom in or CTRL and - to zoom out. Press CTRL and 0 to reset your browser window to normal size.

Open Menu
© Charité | Wiebke Peitz

Press release

06.10.2011

New Findings Concerning Function of the Hippocampus

Back to Overview

You are here:

Researchers decipher mechanism for memory formation

A research team from Berlin, Munich and Haifa has presented new findings concerning the function of the hippocampus, a region of the brain that is important for memory formation. The researchers investigated cellular mechanisms of high-frequency rhythms, which play a key role in memory processes, and possibly also in various brain disorders, albeit in a different manner.

In the current issue of the Neuron journal the research team of scientists in the NeuroCure Excellence Cluster at Charité – Universitätsmedizin Berlin, the Bernstein Centers in Berlin and Munich, and the University of Haifa, presents new findings concerning mechanisms of hippocampal rhythms. Within the scope of memory formation the hippocampus acts as a kind of intermediate memory for the brain. In rest phases, such as during sleep, information that was previously taken in is consolidated and passed on to other regions of the brain for final storage. This hippocampal function is linked to rhythms, so-called oscillations. These rhythms are very similar to the brain waves measured by a physician using an electroencephalograph. The development of these rhythms depends on organized interaction between a multitude of nerve cells. Research in recent years demonstrated that suppression – or intensification – of brain oscillations can impair or improve learning.

In their study the researchers are now concentrating on so-called ripple oscillation, a very fast rhythm at a frequency of 200 Hz, the mechanisms of which are still little understood. They investigated electrical currents in individual hippocampal cells that occur during ripple oscillation. "Our results show directly for the first time how excitatory and inhibitory impulses interact during ripples on a very fast timescale," reports Nikolaus Maier, a neuroscientist at Charité. Understanding these mechanisms is important, not only within the scope of memory research but also because any change in synchronous activity can have fatal consequences. "Disturbance of the hippocampal rhythms can be a potential cause of pathological conditions like epilepsy, schizophrenia or memory impairments in Alzheimer's disease," explains Dietmar Schmitz, coordinator of the NeuroCure Excellence Cluster. That is why the results now published also represent a basis for researching future approaches to clinical treatment.

Contact

Prof. Dietmar Schmitz

Sprecher Exzellenzcluster NeuroCure

Charité – Universitätsmedizin Berlin                 

t: +49 30 450 539 054

www.neurocure.de



Back to Overview